Department of Mathematics and Philosophy
Victoria Baramidze, Professor/Chair
Specializing in Applied Mathematics
Education
Ph. D., 2005, The University of Georgia
M.A.M.S., 1999, The University of Georgia
Diploma in Physics, 1992, Tbilisi State University
Contact Information
Office: 474 Morgan Hall
Phone:
(309) 298-1238
Email:
V-Baramidze@wiu.edu
Teaching and Research Highlights (Google Presentation)
Courses Taught
- Modeling with Mathematical Functions
- Precalculus Algebra
- Precalculus Trigonometry
- Discrete Math
- Introduction to Statistics
- Differential Calculus
- Integral Calculus
- Computer Algebra System Lab
- Calculus with Analytic Geometry
- Partial Differential Equations
- Numerical Analysis
- Approximation Theory
- Scientific Computing
- Numerical Differential Equations
Research Interests
Research: My main area of interest is spline theory, numerical solutions of partial differential equations, numerical integration, computer aided geometric design, geophysics, and atmospheric data analysis.
Research with undergraduate students: Beginner students interested in approximation theory will be able to explore approximation methods for curves in a plane: classical methods as well as more recent techniques for approximating natural shapes, such as leaves, or simple drawings such as comics. The process would involve all steps from data collection to programming methods in Matlab and analyzing approximation errors. For more advanced students, I would suggest problems involving surface approximations.
Selected Publications
- Baramidze, G., Baramidze, V., Xu, Y.(2021). "Mathematical model and computational scheme for multi-phase modeling of cellular population and microenvironmental dynamics in soft tissue." Plos One. https://doi.org/10.1371/journal.pone.0260108
- Baramidze, V. and Ming-Jun Lai. (2018). "Nonnegative data interpolation by spherical splines." Journal of Computational and Applied Mathematics 342: 463-477.
- Baramidze, V. (2016). Smooth bivariate shape-preserving cubic spline approximation. Computer Aided Geometric Design, 44, 36-55.
- Baramidze, V., Ephremidze, L., Mert, C., & Salia, N. (2014). Application of a displacement structure for acceleration of novel matrix spectral factorization algorithm. Journal of Technical Science and Technologies, 3 (1), 25-29.
- Baramidze, V. (2014). Spherical spline solution of the heat equation. Journal of Technical Science and Technologies, 2 (1), 5-13.
- Baramidze, V. (2013). LaTeX for technical writing. Journal of Technical Science and Technologies, 2(2), 45-48.
- Baramidze, V. (2012). Minimal energy spherical splines on Clough–Tocher triangulations for Hermite interpolation. Applied Numerical Mathematics, 62 (9), 1077-1088.
- Baramidze, V., & Lai, M. J. (2011). Convergence of discrete and penalized least squares spherical splines. Journal of Approximation Theory, 163 (9), 1091-1106.
- Lai, M. J., Shum, C. K., Baramidze, V., & Wenston, P. (2009). Triangulated spherical splines for geopotential reconstruction. Journal of Geodesy, 83 (8), 695-708.
- Baramidze, V., Lai, M. J., & Shum, C. K. (2006). Spherical splines for data interpolation and fitting. SIAM Journal on Scientific Computing, 28 (1), 241-259.
- Baramidze, V., & Lai, M. J. (2005). Spherical spline solution to a PDE on the sphere. Wavelets and splines: Athens, 75-92.
- Lai, M., Shum, C., Wenston, P., Han, S., Baramidze, V., & Xie, J. (2005, December). Spherical spline interpolation for geopotential reconstruction. In AGU Fall Meeting Abstracts.
- Baramidze, V., & Lai, M. J. (2004). Error bounds for minimal energy interpolatory spherical splines. Approximation theory XI: Gatlinburg, 25-50.
- Baramidze, V., & Lai, M. J. (2004). Volume data interpolation using tensor products of spherical and radial splines. Advances in constructive approximation: Vanderbilt 2003, 3, 75.
Connect with WIU: