- General Information
- Campus and Facilities
- University Services
- Special Programs
- Admission
- Academic Guidelines
- Graduate School Policies
- Fees and Financial Assistance
- Fields of Study
- Post-Bacc. Certificates
- Other Departments Offering Courses for Graduate Credit
- Index

Admission | Courses | Program | Requirements | Integrated Degree

Department Chairperson: Mark S. Boley

Graduate Committee Chairperson: Mark S. Boley

E-mail: MS-Boley@wiu.edu

Department Office: Currens Hall 212

Department Telephone: (309) 298-1596

Fax: (309) 298-2850

Department E-mail: Physics@wiu.edu

Website: wiu.edu/physics

Location of Program Offering: Macomb

**Graduate Faculty**

**Professors**- Mark S. Boley, Ph.D., University of Missouri-Columbia
- James A. Rabchuk, Ph.D., University of Illinois-Chicago

**Assistant Professor**- Pengqian Wang, Ph.D., Peking University

**Associate Graduate Faculty **

**Assistant Professors**- Esteban Araya, Ph.D., New Mexico Institute of Mining and Technology
- P. K. Babu, Ph.D., Indian Institute of Science
- Kishor Kapale, Ph.D., Texas A & M University

The Department of Physics offers a program of graduate study leading to the Master of Science degree. The program serves as preparation for a) further advanced study in physics or related fields, b) a career in government or industrial research, or c) teaching at the secondary or postsecondary level.

**Integrated Baccalaureate and Master’s Degree Program**

Please go to Integrated Programs for details and program offerings

Students entering the program should have received their bachelor's degree with a major in physics. At the discretion of the Departmental Graduate Committee, other students may be admitted to the program; however, they may have to remedy deficiencies in their undergraduate preparation. The Graduate Record Examination is not required in physics.

Applications for admission are accepted at any time, but decisions concerning graduate assistantships are generally made by March 1 for the following academic year.

Students must complete 34 semester hours of graduate credit including:

I. Core Courses: 9 s.h.

PHYS 510 Classical Mechanics I (3)

PHYS 530 Quantum Mechanics I (3)

PHYS 555 Statistical Mechanics (3)

II. Select one of the following plans of study: 25 s.h.

A. Internship

PHYS 572 Internship Preparation (to be completed before the internship is begun) (1)

PHYS 578 Graduate Physics Internship (8)

Directed Electives (PHYS 577 not to exceed 3 s.h.) (16)

Oral report to the Graduate Committee following the internship is required.B. Thesis Plan

PHYS 571 Introduction to Thesis (must take prior to Thesis) (1)

PHYS 601 Thesis/Thesis Research (3)

PHYS 577 Special Problems in Physics (4)

Directed Electives (PHYS 577 not to exceed 4 s.h.) (17)C. Course Work Plan

PHYS 520 Electromagnetic Theory I (3)

PHYS 567 Mathematical Physics (3)

PHYS 600 Seminar (1)

Directed Electives (PHYS 577 not to exceed 6 s.h.) (18)

**Total Program: 34 s.h.**

Only two of the following 400-level physics courses can be counted toward the 34 credit hour requirement:

PHYS 410G Computational Methods (3)

PHYS 421G Electricity and Magnetism II (3)

PHYS 431G IntroductoryQuantum Mechanics II (3)

PHYS 468G Mathematical Methods of Physics II (3)

PHYS 477G Special Problems in Experimental and Theoretical Physics (1–4)

**410G Computational Methods. (3)** Applications of FORTRAN and/or MATHEMATHICA to programming of numerical and analytical calculations, data fitting, simulation of physical problems, and individualized work on problems chosen from the student's field of interest. *Prerequisite: Basic knowledge of FORTRAN, one year of general physics, one year of calculus, or permission of the instructor.*

**421G Electricity and Magnetism II. (3) **Maxwell’s equations, plane EM waves in infinite media, reflection and refraction of EM waves, guided EM waves, radiation of EM waves, relativistic treatment of electricity and magnetism. *Prerequisites: PHYS 320, PHYS 467 or permission of the instructor.*

**430G Introductory Quantum Mechanics I. (3)** Atomic nature of matter, introduction to quantum mechanics including the Schrodinger equation. *Prerequisite: PHYS 201.*

**431G Introductory Quantum Mechanics II. (3) **Spin, fine structure, atomic spectroscopy, perturbation theory, applications. *Prerequisite: PHYS 430.*

**439G Physics Methods. (3)** Preparation for student teaching. Includes analysis of objectives; new approaches; development of laboratory experiences; resources and utilization of instructional materials; test and evaluation; prestudent-teaching instructional experiences. *Prerequisites: Permission of instructor.*

**468G Mathematical Methods of Physics II. (3) **Complex variables, orthogonal functions, special functions, general solution of partial differential equations in physics. Fourier series and Fourier integrals. *Prerequisite: PHYS 467.*

**476G Special Topics in Physics. (1–4, repeatable)** Lecture course in topics of current interest are given under this number. Topics based on the student's previous training and interests. Subjects announced in the class schedule. *Prerequisite: Permission of the instructor.*

**477G Special Problems in Experimental and Theoretical Physics. (1–4, repeatable)** Individual investigations or studies of any phase of physics not provided for in the regular subjects. Opportunity for undergraduates to engage in experimental or theoretical research under the supervision of staff member. *Prerequisite: Permission of the instructor.*

**482G (cross-listed with CHEM 482 and BIOL 482) Science in Context. (3) **Interdisciplinary course designed for middle and high school science teachers as well as students pursuing secondary science teacher certification. Students explore science as inquiry, the unifying principles of science, and the role of social contexts and ethics in science.

**490G Seminar. (2)** Reading, discussion, and criticism of selected topics. Oral presentation and formal paper on a chosen topic. Writing Instruction in the Discipline (WID) course. *Prerequisite: ENG 280.*

**510 Classical Mechanics I. (3)** Variational principles: Lagrangian and Hamiltonian formulations of mechanics; applications to central force motion, dynamics of rigid bodies, and small oscillations. *Prerequisite: PHYS 311 or equivalent.*

**520 Electromagnetic Theory I. (3)** General solutions of boundary‑value problems in electrostatics and magnetostatics, multipoles, macroscopic media, Maxwell's equations, conservation laws, plane EM waves, wave guides, resonant cavities. *Prerequisite: PHYS 320 or equivalent.*

**528 Advanced Modern Optics. (3) **Diffraction theory utilizing Fourier analysis, transformation properties of lens systems, spatial filtering, information processing. *Prerequisite: PHYS 428 or equivalent.*

**530 Quantum Mechanics I. (3)** Mathematically sophisticated treatment of the basic concepts of quantum mechanics. The Schroedinger equation is applied to one‑ and three‑dimensional problems, stationary perturbation theory, and other selected topics. *Prerequisite: PHYS 430 or equivalent.*

**540 Nuclear Physics. (3) **Selected topics in nuclear physics with emphasis on experimentally observed phenomena including nuclear forces, nuclear reactions, energy levels, nuclear models, decay of unstable nuclei, and an introduction to elementary particles.

**554 Thermal Physics. (3)** A survey of thermodynamic principles and the statistical approach to classical and quantum systems. Applications to kinetic theory, transport phenomena, entropy, specific heat, and phase changes for systems of practical interest. *Prerequisite: PHYS 354 or equivalent.*

**555 Statistical Mechanics. (3) **Study of classical and quantum mechanical distributions with Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. Topics include equations of state, electron and photon gases, liquid helium, and behavior of metals. *Prerequisite: PHYS 554.*

**560 Topics in Solid State Physics. (3)** A study of the electrical, thermal, and mechanical properties of crystalline solids, including lattice bonding, phonon dynamics, band theory, electrons in metals, semiconductors, and superconductivity. *Prerequisite: PHYS 430 or equivalent.*

**567 Mathematical Physics. (3)** Distributions, Green Functions, complex variables and special functions, ordinary and partial differential equations. *Prerequisite: PHYS 468 or equivalent.*

**570 Experimental Techniques in Physics. (3)** Introduction to experimental research techniques including equipment design, machining, vacuum techniques, cryogenics, and practical electronics.

**571 Introduction to Thesis. (1)** A course intended to familiarize the student with technical literature searches, selection of research areas, and thesis writing techniques. Graded S/U.

**572 Internship Preparation. (1)** A course intended to prepare the student for PHYS 578, Graduate Physics Internship. Graded S/U.

**576 Special Topics in Physics. (1–4, repeatable)** Lecture courses in topics of current interest.

**577 Special Problems in Physics. (1–8, repeatable)** Individual problems in the field of physics are selected according to the interest and needs of the student. (No more than seven hours of PHYS 577 may be applied toward the 30 hour degree requirement.) Graded S/U.

**578 Graduate Physics Internship. (8)** A one‑semester on‑the‑job experience in an industrial facility or research laboratory. Graded S/U. *Prerequisite: PHYS 572.*

**600 Seminar. (1, repeatable)**

**601 Thesis/Thesis Research. (3)** Graded S/U.