A method to investigate the structure of astrophysical objects is to study which frequencies of background light are absorbed by the object. In a recent paper, Araya et al. (2014) reported variability of formaldehyde lines from galactic molecular clouds that were detected in absorption toward the radio galaxy 3C111. The variability was interpreted as caused by the relative motion of the molecular clouds and the Solar System around the Galaxy, which would imply that Araya and collaborators were observing a different cross section of the molecular clouds as a function of time. In this project, we explore whether an alternative explanation can account for the observed variability, specifically, if changes in the structure of 3C111 can be the cause of the observed variability. The core of the radio galaxy 3C111 is characterized by an inhomogeneous jet of ionized gas that expands from the center of the galaxy. If components in the jet were luminous enough, they could account for the observed variability. Based on published VLBI observations, we investigate the angular scale, relative brightness and variability of substructure in the 3C111 core. We found that the variability is unlikely to be caused by changes in 3C111, because the proper motion of the jet projected at the distance of the foreground cloud is smaller than the maximum transverse displacement expected from parallax motion and the combined revolution of the Solar System and foreground molecular cloud around the center of our Galaxy.