Potential use of *Trichoderma koningiopsis* in Bioremediation of Heavy Metal Contaminated Soils

Eliese Potocek
Faculty Mentor: Andrea Porras-Alfaro
Biology

Soil pollution caused by heavy metals as a result of technological waste is a threat to the environment and human health. *Trichoderma*, a common fungus in the soil has shown potential to be used for bioremediation of heavy metal contaminated soils. This genus can promote plant growth and is resistant to several heavy metals but very few species have been tested. The objectives of this study are: 1) to determine the tolerance index of *T. koningiopsis* to different concentrations of Ni and 2) determine the potential of this fungus to increase plant germination in a substrate contaminated with different concentrations of Ni. Identification of the fungus was done using ITS rDNA. The fungus was grown at 25°C for 4 to 6 days on Malt Extract Agar (MEA) media with different Ni concentrations ranging from 100-500 ppm to determine the tolerance index. Seeds were surface sterilized to prevent interference of other microbes, and plated on MEA media inoculated with fungus and different concentrations of Ni. A control without fungus was established, as was a control that contained neither fungus nor metal. *Trichoderma* showed similar growth rates from 100-400 ppm with a dramatic reduction of growth at 500ppm. Germination experiments are currently being conducted to determine if *Trichoderma* could be used as an aid to improve plant growth in the presence of high concentrations of heavy metals.